Hyperspectral Image Representation and Processing With Binary Partition Trees

Abstract : The work presented here proposes a new Binary Partition Tree pruning strategy aimed at the segmentation of hyperspectral images. The BPT is a region-based representation of images that involves a reduced number of elementary primitives and therefore allows to design a robust and efficient segmentation algorithm. Here, the regions contained in the BPT […]


Image Noise Level Estimation by Principal Component Analysis

Abstract The problem of blind noise level estimation arises in many image processing applications, such as denoising, compression, and segmentation. In this paper, we propose a new noise level estimation method on the basis of principal component analysis of image blocks. We show that the noise variance can be estimated as the smallest eigenvalue of […]