Privacy-Preserving Outsourced Association Rule Mining on Vertically Partitioned Databases

Privacy-Preserving  Outsourced  Association  Rule  Mining  on  Vertically  Partitioned Databases


Association rule mining and frequent itemset mining are two popular and widely studied data analysis techniques for a range of applications. In this paper, we focus on privacy-preserving mining on vertically partitioned databases. In such a scenario, data owners wish to learn the association rules or frequent itemsets from a collective data set and disclose as little information about their (sensitive) raw data as possible to other data owners and third parties. To ensure data privacy, we design an efficient homomorphic encryption scheme and a secure comparison scheme. We then propose a cloud-aided frequent itemset mining solution, which is used to build an association rule mining solution. Our solutions are designed for outsourced databases that allow multiple data owners to efficiently share their data securely without compromising on data privacy. Our solutions leak less information about the raw data than most existing solutions. In comparison to the only known solution achieving a similar privacy level as our proposed solutions, the performance of our proposed solutions is three to five orders of magnitude higher. Based on our experiment findings using different parameters and data sets, we demonstrate that the run time in each of our solutions is only one order higher than that in the best non-privacy-preserving data mining algorithms. Since both data and computing work are outsourced to the cloud servers, the resource consumption at the data owner end is very low.


Comments are closed.