Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions

Predictive Lossless Compression of Regions of Interest in Hyperspectral Images With No-Data Regions

 Abstract:

This paper addresses the problem of efficient predictive lossless compression on the regions of interest (ROIs) in the hyperspectral images with no-data regions. We propose a two-stage prediction scheme, where a context-similarity-based weighted average prediction is followed by recursive least square filtering to decorrelate the hyperspectral images for compression. We then propose to apply separate Golomb-Rice codes for coding the prediction residuals of the full-context pixels and boundary pixels, respectively. To study the coding gains of this separate coding scheme, we introduce a mixture geometric model to represent the residuals associated with various combinations of the full-context pixels and boundary pixels. Both information-theoretic analysis and simulations on synthetic data confirm the advantage of the separate coding scheme over the conventional coding method based on a single underlying geometric distribution. We apply the aforementioned prediction and coding methods to four publicly available hyperspectral image data sets, attaining significant improvements over several other state-of-the-art methods, including the shape-adaptive JPEG 2000 method.

 


Comments are closed.