Energy-efficient Query Processing in Web Search Engines
Energy-efficient Query Processing in Web Search Engines (IEEE 2017 – 2018)
Abstract:
Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process user queries. Such many servers consume a significant amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low latencies, since users expect sub-second response times (e.g., 500 ms). However, users can hardly notice response times that are faster than their expectations. Hence, we propose the Predictive Energy Saving Online Scheduling Algorithm (PESOS ) to select the most appropriate CPU frequency to process a query on a per-core basis. PESOS aims at process queries by their deadlines, and leverage high-level scheduling information to reduce the CPU energy consumption of a query processing node. PESOS bases its decision on query efficiency predictors, estimating the processing volume and processing time of a query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and the MSN2006 query log. Results show that PESOS can reduce the CPU energy consumption of a query processing node up to ∼ 48 percent compared to a system running at maximum CPU core frequency. PESOSoutperforms also the best state-of-the-art competitor with a ∼ 20 percent energy saving, while the competitor requires a fine parameter tuning and it may incurs in uncontrollable latency violations.
Comments are closed.