Coalition Formation and Spectrum Sharing of cooperative Spectrum Sensing Participants
Coalition Formation and Spectrum Sharing of cooperative Spectrum Sensing Participants
Abstract:
In cognitive radio networks, self-interested secondary users (SUs) desire to maximize their own throughput. They compete with each other for transmit time once the absence of primary users (PUs) is detected. To satisfy the requirement of PU protection, on the other hand, they have to form some coalitions and cooperate to conduct spectrum sensing. Such dilemma of SUs between competition and cooperation motivates us to study two interesting issues: 1) how to appropriately form some coalitions for cooperative spectrum sensing (CSS) and 2) how to share transmit time among SUs. We jointly consider these two issues, and propose a noncooperative game model with 2-D strategies. The first dimension determines coalition formation, and the second indicates transmit time allocation. Considering the complexity of solving this game, we decompose the game into two more tractable ones: one deals with the formation of CSS coalitions, and the other focuses on the allocation of transmit time. We characterize the Nash equilibria (NEs) of both games, and show that the combination of these two NEs corresponds to the NE of the original game. We also develop a distributed algorithm to achieve a desirable NE of the original game. When this NE is achieved, the SUs obtain a Dhp-stable coalition structure and a fair transmit time allocation. Numerical results verify our analyses, and demonstrate the effectiveness of our algorithm.
Comments are closed.