Control of Hybrid ACDC Microgrid Involving Energy Storage and Pulsed Loads

Control of Hybrid AC/DC Microgrid Involving Energy Storage and Pulsed Loads


This paper presents a real-time coordinated control of the hybrid ac/dc microgrids involving energy storage and pulsed loads. Grid-isolated hybrid microgrid applications require special considerations due to the intermittent generation, online energy storage control, and pulsed loads. In this study, we introduce a comprehensive frequency and voltage control scheme for a hybrid ac/dc microgrid consisting of a synchronous generator, solar generation emulator, and bidirectional (ac/dc and dc/dc) converters. A bidirectional controlled ac/dc converter with an active and reactive power decoupling technique is used to link the ac bus with the dc bus, while regulating the system voltage and frequency. A dc/dc boost converter with a maximum power point tracking function is implemented to maximize the intermittent energy generation from solar generators. Current-controlled bidirectional dc/dc converters are applied to connect each lithium-ion battery bank to the dc bus. Lithium-ion battery banks act as energy storage devices that serve to increase the system resiliency by absorbing or injecting power. Experimental results are presented for verification of the introduced hybrid ac/dc power flow control scheme.


Comments are closed.